Home

Aviation News

Flight Training

Aviation History

Theory Of Flight

Airframes

Powerplants

Civilian Aircraft

Military Aircraft

Aviation Wallpapers

Aviation Links

Contact


 

 

 

 

I have found that the way you hold the yoke makes a significant difference as to how successfully you will fly through turbulence. A tight grip with abrupt yoke responses to turbulence seems to accentuate the problem. I have found that rudder is the best way to raise a dropped wing and correct heading changes. Yoke is best for maintaining altitude. Don't sweat the altitude changes. Get a block altitude if you can, declare an emergency if you must.

---Hold your headings, ignore distractions and stay ahead of the approach plate.
---For ILS corrections less is more
---Keep your bank corrections at less than five degrees.
---Use a count system for time of bank correction.
---Use the 12-o'lock needle on the attitude indicator to keep wings level.
---Use horizontal bar of AI to set descent/climb rate
---Trim off all control pressures
---Learn to hold headings and constant altitude changes.
---Eliminate distractions and use mental reserve to flying the approach
---Set up everything for the approach before the marker.
---Approach Checklist Completed is last item on checklist
---Don't try to confirm checklist completed, it's too late.
---Use this system in VFR until you can do it IFR.

ILS PRM (Precision Runway Monitor)
Requirements
---Parallel runways with simultaneous IFR approach
---NTA (No transgression zone between runways
---Faster, better real-time radar in place.
---Monitoring frequency on plate below tower frequencies, one for each runway.
---All breakout instructions must be hand-flown.

Downwind ILS Approach
An ILS downwind approach with a DME assist in adjusting the ground speed means that you need not arrive at the DH with excess air/ground speed as would be the case without a means for determining your ground speed. The slope of the ILS is predicated on ground speed and any excess ground speed means you will overfly the slope and have difficulty getting down. A 10-knot ground speed will double your distance over the fence to touchdown and double your ground roll. Any approach or landing of more than ten knots has little chance of success.

With a wet runway your chance of hydroplaning is quite high in a downwind situation. Nine times the square root of your tire pressure is the hydroplaning speed of your aircraft. With a 36 pound tire pressure you have a hydroplaning speed of 6 x 9 =54. Any touchdown speed over 54 means you are sliding as on ice. Not a good option in a downwind landing.

Personal IFR limits
Ceilings of 1500 and 3-5 mile visibility enroute. Emergency airport accessibility. Every engine failure at night has ended in a crash with few survivors. Judgment would suggest that you have a backup vacuum and battery GPS and transceiver. A single engine aircraft requires situational awareness very mile of every trip.

---Where does your skill limit meet the FAR limit?
---Aircraft complexity as a factor
---Will you be able to cope with an unexpected situation or emergency?
---Can you return to your departure airport?
---Think of VFR instead of IFR when down low.
---Don't cross cold fronts down low
---Approaches are always how low to take a look?
---The missed begins when the approach is falling apart
---Know the DH/MDA and put in a VFR factor
---Reject any vector that puts you high and fast to final
---Don't do an final approach that is not VFR
---Night or circling requires VFR minimums
---Legal minimums are not enough.

Sayings:
You can’t do the right thing if you don’t know what the right thing is.
Don’t leave IFR without knowing where nearest VFR lies.

DME
A DME equipment or accuracy check is not required for IFR or any other use but such checks are available at many airports. The installed accuracy requirement is 1/2 mile or 3% of the distance. Such things as terrain reflections or dirty antenna can affect the both operation and accuracy. The DME distance is a slant range and is not as accurate as GPS distance. At 5000’ above a VORTAC your DME will read one mile. The closer you are and the higher you are the greater will be the DME actual error. At 13,000’ you will never get less than 2-1/2 mile DME reading. The PTS requires tracking the arc within 1 mile of the published distance.
--DME accuracy should be within 3% or 1/2 mile which ever is greater. Code every 37.5 seconds
--DME is slant range so will be different from GPS
--Code is at an unpleasant high pitch.
--DME and transponder frequencies can conflict. Check with transponder on standby.
--Ground speed and time to station are based on rate of change and vary in accuracy.

History
In the last six months of first airborne DME which was used to measure the slant range to a target. The bomb release point could be tracked by radar much as a bomb sight tracks visually. The distance read-out was like an odometer. It took 40 years to get the same ability into G.A. planes.

DME Arc
Arc distances vary from 7 to 30 miles. At 100 kts lead turn from radial to arc by 1/2 mile and 90 degrees change (tangent heading). You should know that the obstacle clearance on a DME arc is the same as an airway. Four nautical miles to each side at the specified altitude. Minimum vertical obstacle clearance is 1000' or 2000' if mountainous. For straight final DME segments the obstacle clearance is 2 to five miles wide and 250'. If final is an arc, it is 8 miles and 500'. DME arcs are usually initial segments but can be intermediate, final or missed approach. Since you need to refer to the DME chart often, be sure of your competency to make rapid visual checks of the charts without losing aircraft control. Regardless of the method the lead radial is where you should change over to the ILS frequency. DME arcs are usually NoPT.

DME arc practice can consist of flying semi-circle arcs and varying distances. Flying the arc can become easy by flying tangent headings while comparing the OBS setting and HI. this corrects for wind as well. The radio magnetic indicator (RMI) is a must for flying DME arcs except for the most proficient.

A DME arc procedure flown by your own navigation must begin at a IAF. ATC actually has the option of ignoring the arc and vectoring you into the initial or intermediate segment of the approach. Training can be augmented by departing via an airway to intercept the arc from the inside. Makes student identify and turn correct way.  DME arc can only be intercepted at IAF unless otherwise authorized by ATC.

Bracketing
Know the 90 degree heading required when intercepting the arc from a radial. If the DME reading increases, turn into it by 10 degrees. If the DME reading decreases, turn away by 10 degrees. This bracketing method does not provide position guidance and can be difficult in strong winds. It is the low workload method.

Centered Method:
--
Turn 90 degrees from the interception radial to the arc.
--Turn the OBS to keep the needle constantly centered
--Keep your heading 90 degrees to the OBS radial setting.
--Any changes in DME readings must be corrected as in method #1.

10 Degree Method:
--
Turn 90 degrees from the interception radial to the arc.
--Set OBS 5 degrees ahead.
--It is better to initially set 1/2 needle deflection.
--Fly until 1/2 needle deflection to the other side.
--This gives better control over the 10 degrees than with full deflection to one side
--Turn the OBS ahead another 10 degrees.
--Bracket the DME readings as in method #1.

Continue To Next Page

 


Copyright 2003-Now www.airman.us All rights reserved. Reproduction in any form is prohibited.